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Abstract: Detonation Shock Dvnamics (DSD) can be used to model the effects
that shock curvature. x~ has on detonation speed. D, (x). At the edges of the
explosive, D, (k) is supplemented with boundary conditons. By direct numerical
simulation (DNS). we study how the reaction zone interacts with the edge. DSD
rtheory has been integrated with the level-set merthod of Osher & Sethian and
the Los Alamos DNS code Mesa to create a powertul tool for simulating complex
explosive containing systems.
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1. Introduction

To nccurately predict the propagation of detonation through an explosive, one
ueeds to todel the physics that occurs on the chemical reaction-zone scale,
)r. In sharp contrast to the structured shocks observed for guseous detonation,
those for heterogeneous solid explosives are broadly curved on the s, scale. The
speed of the detonation is strongly influenced by the curvature of the shock. s:
with reductions of speed of 40%. in strongly divergent Hows,

Safety concerns hinve led to the use of explosives that satisfv £/, = O(10),
where £ is a representative dimension of the explosive. Curvature effects have
n strong influence on detonation in these svstems. and highly-resolved multidi-
mensionul simulations are "expensive.” A body of theory and supporting experi-
ments have been developed that treats these enrvature effeets endled Detonation
Shock Dynamics (DSD) (Aslam, Bdzil & Stewart 1995). The DSD front theory
derives a speed function D, (k) based ona wenkly aivergent. quasi one dimen-
sional (1D) model of the detonation reaction zone, This function can also be
determined directly from experiments. The regions of strongest. How divergence
are found near the explosives’ boundaries. Boundary conditions (BCY st he
supplied in addition to D, (#) to treat these interactions, The DSD dvnnmies of
broadly curved fronts interacts with the edge through o narrow boundary Laver
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2 C'urved Detonation Fronts in Solid Explosives

a few 5, thick. where the flow is both reactive and fully two-dimensional (2D).

In Section 2 we give a brief roview of DSD. Front theories require a front
propagation algorithm. In Section 3 we deseribe an engineering implementation
of DSD that uses a level-sot (LS) nlgorithin (Osher & Scthian 1988) to prop-
agate the DSD front (Bdzil & Stewart 1989). (Aslam. Bdzil & Stewart 1995).
To integrate DSD front theorv with hvdrodynamic simulations., an accurate
wethod is needed to quickly burn the explosive and capture the detonation
state consistent with D, (~). In Section 4 we deseribe our new burn model and
show u full DSD-based simulation. In Section 5 we discuss results obtained
fromn high-resolution simulations of two cdge problems. 1) the sudden loss of
confinement and 2) oblique interaction of detonation with a rigid wall. Owing
to reaction-zone effects, we find that detonations exhibit von Neumann reflec-
tion (Colella & Henderson 1990).

2. DSD Theory

DSD is the name given to the body of multidimensional detonation theory and
experiments that is used to describe the dynamics of detonation with broadly
curved shocks on the reaction-zone scale 5., The model equations used to
describe this limit derive from the 2D. reactive Euler equations transforied to
shock-attached, intrinsic coordinates. Shown in Fig. (1), is our coordinate net
of straight lines nornal and curves locally parallel to the shock, all moving with
the shock normal speed D,,.

we >0 th Kk <0

Figure 1. A snapshot showing diverging detonation (). converging detonation (b).
the intrinsic coordinntes and the definition of the bonndary-edge angle w. The speed
of the wave is inHuenced by two nctors, the convergence/divergence and the loeation
of the souic surficee,

2.1. Interior How

The weak shock-curvature limit defined by & = O(¢). where « = (reaction -
sone seale)/(shock radius of curvature), is the basis of most theoretical anal-
vain of 2D detonation. This limit cavistons that O(1) changes in the Held vari-



C'urved Detonation Fronts in Solid Explosives 3

nbles vceur over (J(e~!) distances in the E-direction. and the How velocity in
the &-direction is no greater that (J(¢). Under these assumptions. the DSD re-
lnted time derivatives are ()(¢). the How is principally in the j-direction and is
“nozzle”-like (see Fig. 1). and 2D enters the How only parametrically., via (€. t).
This limit allows for rime dependence ou the ()(1) reaction seale. provided no
(1) velocities in the &-direction are generated. The various streamtubes then
coinmunicate with one another onuly through the shock-surface compatibility
condition (i.e., through the LS equation or whichever propagation method we
use). The DSD reaction zoune equations are:

(p) + p(Dn — U)q = —pUx. (1)
py=r, = 0. (2)
Pée)y=Pp) = 0, (3)

where () = (9/0t).e+(Da—U)(0/0n)g unrd p, U, P. ¢(P.p. Aq). X and ¢ are the
density, laboratory particle velocity in the 1)- direction. pressure. specific internal
cnergy, degree of reaction and heat of detonation. respectively. Henceforth,
when ¢, 3, &, etc. are used as subacripta they denote partial derivatives. Tiie
master equation, derivix] from Eqs. (1-3) helr i us analyze the 2D reaction zone

P+ [J(D,. - U)Ul = "I’[(Dn - U)‘ - (*‘:]Uu +a. (‘I)

where @ = —(ey/ep)R — pC2 Uk aad C. ~(ey/ep)R > 0 and (A) =R 2 0ar
the sound speed, heat-release rate and chemical rate law. respectively.

In its simplost realization, DSD theory nssumes that Dy, /D¢y = 1 + ()(¢).
that the departures fromn the Zeldovich-von Newmnanu-Doring (ZND) limit are
small und neglects the inertin of the reaction zone (setting # derlvatives in
Eqs. (1-4) to zero). The reaction-zone structure is then obtained by solv-
ing the steady form of Eqs. (1-3), subject to the shock conditions and pen-
erallzed Chapman-Jouguet (C\J) condition obtained from Eq. (1) (i.e.. (D, -
U) - C* = () when o = 0, provided that x > 0). This defines an eigen-
value problem that obtainy D, (k). Figure 1 shows that two effects contribute
to D, < D¢yt 1) the divergence and 2) the movement of the sonic sur-
fuce. For wenkly convergent systems, offeet 1) dominates and D,(x) = Dy
in derived by reauiring (D, = /) = €7 = 0 at the end of the reaction zone
thewe A = 1), Detalls can be found in (Bedzil 1981). (Bdzil & Stewart 1986),
(Stewart, Aslam. Yoo & Bdzil 1995), (Aslan. Bdzil & Stewart 1995) and refor-
ences therin, Importantly for 1, (x). the shock evolves by parabolle dynamies
and so Is stooth. For real heterogencous solld explosives /2 is not well known.
Then Da(a) In determined direetly from experbinent, The 1,(x) lor the explo-
sve PBX 9502 is shown in Fig. 20, Note the (1) varlations of (e~ 1,)/ Dey.
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2.2. Boundary conditions

DSD dynamics of slow variutions in the £-direction can break down at explosive
boundaries. There the flow can be fully 2D and time-dependent on the O(1)
reaction-zone xcale (Bdzil & Stewart 1986G). On the slow-time DSD xcule. this
region can appear to he steady. Then the DSD and boundary regions are
coupled as follows: 1) the DSD region drives the boundary wirh information on
the shotk slope and D,,. and in turn 2) the boundary region uses this data to
return a (posdibly) moditied shock slope. ote. (Bdzil 1981). Using the boundary
angle w defined in Fig. 1. DSD supplies w,, to the boundarv flow. which then
returns wey to the DSD region. The boundary is itsell characterized by two
angles that depend on the explosive/inert pair being considered: n critical angle
w, aid a confinement angle w..

We've distilled these interactions into the following recipe. If w), < w.. then
Wout = Wy Utherwise, w,y = o The boundary dynamics are considered in
more detail later in this paper.

3. Front propagators

Together, the D,(~) function and the boundary conditions provide o complete
dynamical decription of the detonation front at the DSD level. A second element
is needed to propagate the front: a shock compatibility condition that relates
how changes in the speed of the front affect its” shape. One of the most widely
used forms of this condition i \Whitham's ruy method (Whitham 1973). Every
section of the detonation front advances along a systemn of rayx that resetble the
bicharacterintic rays of geometrical optics. Although physicallvy appealing such
methods can be logically complex. The front-attached ruys converge and diverge
with tho front, which can lead to numoerical problems. This is one memeber of
the fumnily of marker particle or Lagrangian methods. Such methods are not well
suited for engineering applications where the problem geometries are complex.

3.1. Level-set method

Osher and Sethian (Osher & Sethinn 1988) devised o powerful algorithin for
propagating frouts with curvature dependent wpeed.  Their method obviates
the need for the complex logle to treat collivions and avoids the problem of
marker particle methods. They consider the shock an n level curve C(e g 1) = 0
embedded in o higher-dimensional LS-function ¢(r, g 1) that's detined on an
Fulerian grid. ‘The evolution equation for the LS-function is derivid by using
the property o'(.r. g0 1) == constant nlong, a level curve to obtain

v+ Du(k) N =0. (h)

Equation (5) is the IS-method surfnce compatibility conditjon.
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The precise torm selected for eee. g 0) is unimportant. provided thar oty Q)
is single-valued. This iusensitivity requires that. 1) D, depend only on data
from a single curve and 2) that the level curves not cross with time. The
first property is automnatic, since D,(r). The second property follows from
the fact that the distance between level curves. as wmeasured by dir oy .t =
|€L"(:I'. Y, ())l/le’-u'l. does not go to zero. By way of example. for D, = D¢ -k
with o > (. the d-equation (which is derived from Eq. (5)) is

dy + Deyii -V (d) = ar’d . (6)

for a cylindrically svinmetric svstem. Since an® > 0 and d(x.y.0) = L. d
increnses with time. The result d(e. y.¢) > 0 continues to hold for fullv 2D svs-
tems with strong divergence at the boundaries (Aslam, Bdzil & Stewart 1995).
In practice. we assign v’ = 0 to the shock. with y* > 0 in unburnt material and
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Figure 2. The D,(x) for a typical condensed phase explosive. PBX 9502 is shown
in Fig. 2u. Burn time contous for an engineering-style problem obtained with the
L.S-method are shown in Fig 2. The dark -reas are obstacles.

¢ < 0 in burnt materinl. The burn time 8, y) is taken as the Hrst time that
o< O at nopoint. Figuae 20 shows the result of a LS ealeulation ot the burn
titnes for n engineering-style problem. Initindly, the detonation is a semi-cirele
with origin (0.0) and obevs Dy, = 8 mm/ ps—w < 66 man? / ps evervwhere, Bifur-
cation, merging. convergence and divergence of the wave are all well captured.
All of these ideas ensily carrvover to 3D.

4. Hydi1odynamic simnulations using DSD

The work that has gone into DSD was motivated by the need to capture
reactiot-zone etfects in nmunerieal simulutions of engineering systems, Two ole-
ments are required to aceomplish this goal: 1) acenrate fromt evolution and 2)
an ability to deposit the proper detonation state (e, £2(0D,), p(D,). U(D,))
at the front.



] Curved Detonation Fronts in Solid Explosives

To address element 2). we've developed a numerical reaction-zone model that
uses a pseudo”’ divergence () in place of # in simulations, so that a detonation
state consistent with D, is captured. To eliminate precursors to the D, (r) wave.
we built a model around the reaction zone EQS. ¢(P/A, p,q), which together
with the trigger provided by the DSD burn times #,(2. y), causes the numerical
"reaction zone”’ to be on the weak detonation branch. Starting with P = 0 and
A = (), at t,(x,y) the explosive is rapidly burned (i.e.. A — 1 in about the time
it takes the wave to traverse one computational zone). From Eq. (4} it follows
that the ratio x/R determines D,. Since this nonphvsicil numerical reaction
rate. R is associated with the size of the computational zones, we replace Ux
in Egs. (3-4), by

Us=>QR, R=R, (7)
and then solve for D, (€2). Elimination then vields {2(x), the "pseudo” diver-

gence required to get the numerical detonation to be compatible with D, (k).
This 2-part model is implemented in a second-order, 2D. multimaterial, Eule-

Tw8us

=
Dn
(,_..

(a)

Figure 3. Mesa calculation of the detonation cylinder test. The detonation wave is
moving to the right. Inset (n) shows the results at t = 8 ps from the D, = D¢y
model. (b) shows the D, (~) model at t = 12us.

rian grid hydrodynamics code at Los Alunos called Mesa (Holian, ot al. 1989).
The results of two calculations of the detonation Cu eylinder test (one using
the standard D,, = D¢-y model and the other using DSD) are displayved in Fig.
3. The difference in the timing and wave shapes is striking.

5. Boundary condition study

A complete theoretical analvsis of fullv 2D, reactive edge Hows is out of reach.
Here we present some results obtained using high-resolution munerieal siim-
lutions. A limited amount of supporting theory is offered to help with the
interpretation of these results.

We study a simplified Euler Huid model, and use o polytropic EOS with o
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large ~ to mimic condensed phase explosive, where
t = Plp/(v—=1)—qX. (8)

with v = 3. an initial density py = 2000kg/m?* and a heat of detonation ¢ =
4 x 10%m?/s%, wo that Py = 3.2 x 10'N/m* is large. A simplified state-
independent rate law is used (A = 2.51 x 10Y/s)

(M=R=~k/1-2AX. (9)

for which the 1D steady-state reaction-zone length is 4 x 10™*m and the particle
reaction time is 0.8 us. The numerical simulations were done using a second-
order Godunov code called Caveat (Addessio., et al. 1990). The grid size used
in the calculations was 2 x 10™"n in the streamwise direction. Two types of
boundary interactions are studied here. For both. the detonation is initially a
plane ZND wave whose direction of propagation is colinear with a flat mgid wall
(i.e., w = 90°). Problem 1) considers the reponse of the detonation to a sudden
loss of confinemnent. while the interaction of the detonation with a converging,
rigid wedge is studied in problem 2).

5.1. Loss of confinement

A collection of the results form problem 1) are shown in Fig. 4. Propagating up-

(shock) edge edge
R
T«0 T=lus
(a) (c)

L Ta3 _‘__¥\\ ¢°—-d-g. 0.0
- r

VA \ 2/ref
Y" -0t
- Tu0

(b) (d) i

PBX 9502
rz-=1mm Re=S5mm
1.0 R/Re 1.0

Figure 4. Response of a detonation reaction zone to a sudden loss of confinement.
Insets (a). (b). (¢) and (d) show the reaction-zone pressure contours, the evolving
shock front shape, late time pressure contours and an experimentally measured shock-
front shape. respectively.
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wards initiallv. the detonation loses confinement along its right boundary ar ¢ >
0. Inset (4a) shows strong 2D flow at the edge as evidenced by P- = (J(1) and
the rapid change in the shock slope (w changes from 90° to 55?). The Prandtl-
Meyer expansion that develops. limits the decrease in pressure at the shock
which results in a tixed shock-edge angle after a very short transient. as shown
in (4b). The rarefaction moves along the shock at (\/'C'-’ — (D, = U)o =

Figure 5. The oblique internction of a resolved reaction zone detonation with a rigid
wedge. Insets (u). (b). (¢). (d) and (e) show the evolving lead shocks for a 407 and 20¢
wedge. pressure profiles at t = 24 uy for the 40” and 20° wedge, a strong inert shock
over a 20¢ wadge and the curved "Mach™ interaction for PBX 9502, respectively.

0.7D¢+y. Inset (de) shows a broadly curved DSD wave at ¢ = 24 ps. The value
we = DB, corresponds to a How that is exactly sonic ay measured with respect
to the shock-edge intersection point. A discussion of the effect that inereas-
ing confinement and changes in w, have on these results is given clsewhere
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(Bdzil & Stewart 1986). (Aslam. Bdzil & Stewart 1995). The experimenrally
measured shock arrival trace for a Re = 5 min detonating cvlinder of PBX
9502 is shown in (4d). The w,. = 45°. corresponds to the sonic angle for this
material. For this explosive 7, = 1 mm. Measured on this scale. the shock for
this 10 mum diameter explosive is broadly curved.

5.2. Converging wedge

A collection of results from problem 2) is shown in Fig. 5. A ZND detonation
propagating to the left meets a rigid. converging wedge at x = 190 mmm (r =9
is at the left). Standard three-shock theorv for a CJ-detonation predicts Mach
reflection for wi, > 45°. A simulation of the 50° wedge problem shows regular
reflection. The evolving shock and D, for both a 40 and 20° wedge shown in
(5a) display irregular reflection. The pressure contours at ¢ = 24 us shown in
(5b) reveal the irregular reflection grows slowly for the 40° case. Although the
structure looks somewhat classical, the reflected wave is clearly dispersed.

The pressure contours at t = 24 us for the 20° wedge reveal a totally noncla-
sical von Neumann reflection (Colella & Henderson 1990). The leading shock
is broudlv curved with no evidence of a reflected shock. This is & consequence
of the diffraction of the reflected wave by the reaction zone How gradient. DBy
contrast, the Mach retlection of an inert shock of comparable strength. shown
in (5d), is classical. Figure (5e) shows "Mach™ reflection during the collision
of two PBX 9502 detonations. These measurements were made at Los Alamos
bv Larry Hull (Hull 1995, private cominunication). With the progress of time
(time advances to the left), the wave interaction region (the earliest part of each
trace) becomes wider and more “rounded.”

We present. a qualitative theoretical argument to help understand these ob-
servations. Equation (4) is exact along the shock
2 , 2 -
e 0t 00 () - Dk
3 (~+1) (vy-1 6 3+ 1)

(10)
Differentiating Ec¢;. (10) with respect to €. using the shock compatibility condi-
tion and then transforming the resulting equation to a reference frame moving
at acoustic speed along the shock (v = —(\/E"2 - (Dy = U)*))0 with do =
€ — vdt) derives an equation for the amplitude of the leading edge of a weak
2D disturbance moving into a 1D ZND detonation

Dfl) (U,,),,=() +

ik, =

2+ ey (41 . O ’ |
- B Y - T [ np=tt)
T T am ot TR+ OB+ OBy D

The variable A = (8Dey/k)wavetead 18 the scaled shock curvatuve, r = kt
is the scaled time and o measures the state-dependence of the rate (ep.. It =
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I\-\/"l-—T\uxp (gD, ; D¢ yi). The strength of the 2D disturbance is K. with INT --
> denoting triple-point formnation on the shock. Dropping the order terms in
Eq. (11). setting ~ = 3 and solving. finds that for ¢ < 1. N — 0 when [{',:.. .-
—(1=a)/6 and K — — . otherwise. Thus sutficiently weak couvergence, does
not lead to triple-points. This is what we see in our simulations. Suppressing
the reaction related terms in Eq. (i1). finds that all levels of convergence lead
to triple-points for inert Hows. The DSD boundarv conditions derived from
this example are: 1) when wj, < wy = 35° then w,,, = W, and 2) when

Win > w'y = 35°, then wyy = w. = W°.
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